Что такое живая счетная машина. Живая счётная машина. Вычислительная машина Ч.Беббиджа

Работа добавлена на сайт сайт: 2015-07-05

Заказать написание уникльной работы

" xml:lang="ru-RU" lang="ru-RU">Лекция 2. Эволюция вычислительной техники

;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">Теория эволюции компьютеров

;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">Современное состояние вычислительной техники (ВТ) являет собой результат многолетней эволюции. В последнее время вопросы развития ВТ стали предметом особо пристального внимания ученых, свидетельством чего служит активно развивающаяся новая область знаний, получившая название «Теория эволюции компьютеров» (Computer evolution theory).

;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">Создатели теории обратили внимание на сходство закономерностей эволюции вычислительной техники и эволюции в биологии. В основу новой науки положены следующие постулаты:

  • ;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">самозарождение «живых» вычислительных систем из «неживых» элементов (в биологии это явление известно как абиогенез);
  • ;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">поступательное продвижение по древу эволюции — от протопроцессорных (однопроцессорных) вычислительных машин к полипроцессорным (многопроцессорным) вычислительным системам;
  • ;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">прогресс в технологии вычислительных систем как следствие полезных мутаций и вариаций;
  • ;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">отмирание устаревших технологий в результате естественного отбора;
  • ;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">закон Мура как подтверждение эволюции вычислительных систем.

;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">По мнению специалистов в области теории эволюции компьютеров, изучение закономерностей развития вычислительных машин и систем может, как и в биологии, привести к ощутимым практическим результатам.

;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">Закон Мура

;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">19 апреля 1965 г., в журнале «Electronics» (vol. 39, № 8) в рубрике «Эксперты смотрят в будущее» вышла ныне всемирно знаменитая статья Гордона Мура (Gordon Moore) «Cramming more components onto integrated circuits» (Объединение большего количества компонентов в интегральных схемах). В этой статье Мур (будущий сооснователь корпорации Intel), работавший тогда директором отдела разработок компании Fairchild Semiconductors, дал прогноз развития микроэлектроники на ближайшие десять лет на основании анализа шестилетнего развития микроэлектроники, предсказав, что количество элементов на кристаллах электронных микросхем будет и далее удваиваться каждый год.

;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">Существует несколько интерпретаций закона Мура:

  • ;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">наиболее выгодное число транзисторов на кристалле удваивается каждый год;
  • ;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">число транзисторов в производимых чипах удваивается каждые два года;
  • ;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">технологически возможное число транзисторов на кристалле микропроцессора удваивается каждые два года;
  • ;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">производительность микропроцессоров удваивается каждые 18 мес.;
  • ;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">тактовая частота микропроцессоров удваивается каждые 18 мес.

;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">Справедливости ради, следует признать, что так называемый закон Мура не выполняется с точностью, достаточной для того, чтобы считать его не только законом, но и эмпирической зависимостью.

;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">Дуализм в развитии техники

;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">Развитие человека и общества неразрывно связано с прогрессом в технике вообще и технике для вычислений, в частности. Имела и имеет место тенденция к постоянному усилению физических и вычислительных возможностей человека путем создания орудий, машин и систем машин. Установился своеобразный ;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">дуализм в развитии техники ;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">, который иллюстрируется двумя эволюционными «рядами»:

;font-family:"Times New Roman"" xml:lang="-none-" lang="-none-">Физический ряд

;font-family:"Times New Roman"" xml:lang="-none-" lang="-none-">Вычислительный ряд

;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">В истории вычислительной техники (ВТ) ясно выделяются два периода:

  1. ;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">простейшие механические и электромеханические приборы и машины для вычислений (можно назвать «предысторией» или «древней историей»);
  2. ;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">ЭВМ и параллельные вычислительные системы («новая и новейшая история»).

Механическая эра вычислений

;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">Арифмометры

;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">Арифмометр ;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU"> (от греч. arithmos – число и metrov – мера, измеритель) – настольная механическая счетная машина с ручным управлением для выполнения четырех арифметических действий.

;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">Хронология:

;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">1492 год. ;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU"> В одном из своих дневников Леонардо да Винчи приводит рисунок тринадцатиразрядного десятичного суммирующего устройства на основе зубчатых колес.

;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">1642 год. ;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU"> Блез Паскаль (Blaise Pascal, 1623–1663) представляет «Паскалин» — первое реально осуществленное и получившее известность механическое цифровое вычислительное устройство. Прототип устройства суммировал и вычитал пятиразрядные десятичные числа.

;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">1673 год. ;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU"> Готфрид Вильгельм Лейбниц (Gottfried Wilhelm Leibniz, 1646–1716) создает «пошаговый вычислитель» — десятичное устройство для выполнения всех четырех арифметических операций над 12-разрядными десятичными числами.

;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">1786 год. ;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU"> Немецкий военный инженер Иоганн Мюллер (Johann Mueller, 1746–1830) выдвигает идею «разностной машины» — специализированного калькулятора для табулирования логарифмов, вычисляемых разностным методом.

;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">Широкое распространение имел арифмометр, сконструированный в ;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">1874 г. ;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU"> петербургским механиком В.Т. Однером. Производство таких арифмометров было налажено и в России (1890 г.), и за рубежом. Арифмометр В.Т. Однера послужил прототипом последующих моделей (в частности, для модели «Феликс», выпускавшейся в СССР до 60-х годов прошлого столетия).

;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">Следует подчеркнуть, что любой ;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">арифмометр обеспечивал не автоматизацию, а лишь механизацию вычислений ;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU"> (благодаря таким средствам как счетчик и регистры).

Счетно-аналитические машины

;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">Счетно-аналитические машины появились в конце 19 и начале 20 веков.

;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">Были ВМ для выполнения бухгалтерских и финансово-банковских операций, статистические ВМ, машины для решения задач вычислительной математики.

;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">В таких машинах не только был достигнут максимальный уровень механизации вычислений, но и была заложена возможность автоматизации при вводе чисел и при реализации целых серий операций. В них использовались перфокарты для ввода данных и для управления работой.

;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">Счетно-аналитические машины – это комплекты, включавшие:

  1. ;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">машины для выполнения арифметических действий над числами, нанесенными на перфокарты:
  • ;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">суммирующие машины (табуляторы),
  • ;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">множительные машины (умножающие перфораторы или мультиплееры);
  1. ;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">машины (сортировальные и раскладочные или сортировально-раскладочные) для реализации информационно-логических операций: классификации, выборки карт с нужными числами и признаками, расположения карт в определенном порядке, сравнение чисел и т.п.;
  2. ;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">перфораторы, т.е. машины, которые позволяли человеку наносить на карты отверстия (выполнять перфорирование карт);
  3. ;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">вспомогательные машины; например, контрольные аппараты, репродукторы для переноса пробивок с одних карт на другие.

;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">Первая вычислительная машина для решения дифференциальных уравнений была создана в России в 1904 г. кораблестроителем, механиком и математиком А.Н. Крыловым (1863 – 1945; академик Петербургской АН с 1916 г.).

;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">Конкретный комплекс счетно-аналитической техники может состоять из различного числа устройств, но в него обязательно входят следующие четыре устройства: входной перфоратор, контрольник, сортировальная машина и табулятор. Перфоратор служит для пробивки отверстий в перфокартах, а контрольник - для проверки правильности этой пробивки, т. е. правильности перенесения информации с исходного документа на перфокарту. Обычно контрольник конструируется на основе перфоратора с заменой пробивного устройства воспринимающим. Основной функцией сортировальной машины является группировка перфокарт по признакам для дальнейшей обработки на табуляторе. Разновидностью сортировальной машины является счетно-сортировальная, т. е. имеющая приспособление для подсчета перфокарт в каждой группе.

;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">Основная машина счетно-аналитического комплекса - табулятор. Независимо от конструкции его обязательными частями являются механизмы, обеспечивающие подачу перфокарт, восприятие пробивок, счет пробивок и печатание результатов, а также устройство управления.

;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">Наряду с перечисленными в состав счетно-аналитического комплекса могли входить так называемые дополняющие, или специальные, машины, в том числе итоговые перфораторы (для перфорации новых перфокарт по итоговым данным табулятора); перфораторы-репродукторы (для дублирования перфокарт, а также работы в качестве итоговых перфораторов при их соединении с табуляторами); вычислительные приставки к табуляторам и т. д.

;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">К 1930 г. общее число счетно-аналитических комплексов в мире достигло 6-8 тыс. штук. В начальный период развития перфорационной техники она применялась главным образом в статистике. Со временем все более возрастает применение для бухгалтерского учета, и например, в 40-е годы в СССР в статистике использовалось около 10% счетно-аналитических машин, а более 80% - в бухгалтерском учете.

Вычислительная машина Ч.Беббиджа

;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">Идея создания универсальной большой вычислительной машины (Great Calculating Engine) принадлежит профессору математики Кембриджского университета (Великобритания), члену Лондонского Королевского Общества Чарльзу Беббеджу (Charles Babbage, 1792 – 1871; чл.-корр. Петербургской АН с 1832 г). По сути он имел замысел создать ;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">автоматический ;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU"> механический цифровой компьютер (или, говоря иначе, арифмометр с программным управлением). Проект ВМ был разработан в 1833 г.

;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">Механическая машина Ч. Беббеджа по своей функциональной структуре была достаточно близка к первым электронным ВМ. В изучаемой ВМ предусматривались арифметическое и запоминающие устройства, устройства управления и ввода-вывода информации. Автоматизация вычислений обеспечивалась устройством управления, которое работало в соответствии с программой – последовательностью закодированных действий на перфокартах. В машину Ч. Беббеджа закладывалась возможность изменять ход программы в зависимости от полученного результата (на современном языке – команда условного перехода).

;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">Машина должна была быть построена из нескольких тысяч счетных колес, иметь запоминающее устройство емкостью 1000 50-разрядных чисел и встроенные таблицы логарифмов и других элементарных функций. Она должна была размещаться на площади в несколько квадратных метров.

;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">В 1835 г. была построена простейшая конфигурация ВМ, которая применялась для логарифмирования и решения алгебраических уравнений. Как писали современники, машина отыскивала решения уравнений за минуты (в сравнении с опытным математиком, которому потребовались бы дни).

;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">Проект Ч. Беббеджа опережал запросы времени, технические и технологические возможности реализации, он был дорогостоящим. Именно поэтому Британский Парламент в 1842 г. прекратил оплату проекта по гранту. Ч. Беббедж продолжал работу над проектом более 30 лет и разработал 239 детальных чертежей.

Вычислительные машины Конрада Цузе

;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">Модель ;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU"> ;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">Z1 ;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU"> была построена в 1938 году; это ;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">первый в мире цифровой механический компьютер с программным управлением ;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">. Архитектурными особенностями ;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">Z1 ;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">являлись также: двоичная кодировка и система представления чисел с плавающей запятой (или “полулогарифмическая” система, если использовать терминологию К. Цузе). При этом длина числа составляла 21 разряд, из которых 1 разряд отводился под знак числа, 7 разрядов предназначались для порядка и его знака, 13 разрядов – для мантиссы.

;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">Вычислительная машина Z1 – по сути тестовая модель, которая никогда не применялась для практических целей. Эта машина была реконструирована в Берлине самим К.Цузе в 1980-х годах, сейчас она экспонируется в Берлинском музее транспорта и технологии.

;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">Модель Z2 ;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU"> была создана в 1940 году, в ней впервые были применены электро-механические реле. В машине Z2 арифметическое устройство и устройство управления были реализованы на реле, а память оставалась механической (от модели Z1).

;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">Такая гибридная конфигурация ВМ была не достаточно надежной и практического применения не нашла.

;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">Модель Z3 ;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU"> – ;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">первая в мире двоичная электромеханическая ВМ с программным ;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU"> ;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">управлением. ;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU"> Работы по созданию машины Z3 были начаты в 1939 г., а ее монтаж был полностью завершен 5 декабря 1941 г.

;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">Рассмотрим архитектурные возможности ВМ Z3. При этом, следуя традиции анализа компьютеров, приведем технические характеристики и функциональную структуру машины Z3.

;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">Машина Z3 предназначалась для выполнения операций сложения, вычитания, умножения, деления, извлечения квадратного корня и вспомогательных функций (в частности, двоично-десятичных преобразований чисел). Для представления чисел использовалась двоичная система с плавающей запятой. Длина числа – 22 двоичных разряда, из которых 1 разряд – знак числа, 7 разрядов – порядок или экспонента (в дополнительном коде), 14 разрядов – мантисса (в нормализованной форме). Быстродействие ВМ при выполнении сложения – 3 или 4 операции в 1 сек., а время умножения двух чисел составляло 4 – 5 сек.

Принципы фон-Неймана

;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">Архитектура фон Неймана (англ. Von Neumann architecture) — широко известный принцип совместного хранения программ и данных в памяти компьютера. Вычислительные системы такого рода часто обозначают термином «Машина фон Неймана», однако, соответствие этих понятий не всегда однозначно. В общем случае, когда говорят об архитектуре фон Неймана, подразумевают физическое отделение процессорного модуля от устройств хранения программ и данных.

;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">Каноническую функциональную структуру ЭВМ (выше на схеме), связывают с именем Дж. фон Неймана. Структура ЭВМ включает арифметико-логическое устройство (АЛУ), память или запоминающее устройство (ЗУ), устройства ввода (УВв) и вывода (УВыв) информации и устройство управления (УУ). Функциональное назначение устройств ЭВМ: АЛУ служит для выполнения арифметических и логических операций над данными (операндами: числами или словами, в частности, буквенными последовательностями), а также операций условного и безусловного переходов; ЗУ используется для хранения программ и данных; УВв – для ввода программ и данных, а УВыв – для вывода из ЭВМ любой информации (в частности, результатов); УУ координирует работу всех остальных устройств при выполнении программ.

;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">Конструкция ЭВМ основывается на предложениях, выдвинутых Дж. фон Нейманом (John von Neumann, 1903 – 57). Во время разработки машины EDVAC, в середине 1945 г., Дж. фон Нейман написал 100-страничный отчет, суммирующий результаты работ над ЭВМ. Этот отчет стал известен как первый “набросок” ("First Draft of a Report on the EDVAC"). Отчет был недописан, в нем не достает многих ссылок. Однако в своем отчете Дж. фон Нейман достаточно ясно изложил принципы работы и функциональную структуру ЭВМ ("the working principles and functional structure of modern computers"). Главное то, что он предложил отказаться от ручных переключателей, используемых при программировании ENIAC, и хранить программу работы ЭВМ в ее оперативном запоминающем устройстве (памяти) и модифицировать программу с помощью самой же машины.

;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">Опишем архитектурные принципы построения ЭВМ.

  1. ;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">Программное управление работой ЭВМ ;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">. Программы состоят из отдельных шагов – команд; команда осуществляет единичный акт преобразования информации.
  2. ;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">Условный переход ;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">. Это возможность перехода в процессе вычислений на тот или иной участок программы в зависимости от промежуточных, получаемых в ходе вычислений результатов (обычно в зависимости от знака результата после завершения арифметической операции или от результата выполнения логической операции).
  3. ;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">Принцип хранимой программы ;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU"> предопределяет ее запоминание вместе с исходными данными в одной и той же оперативной памяти.
  4. ;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">Использование двоичной системы счисления ;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">для представления информации в ЭВМ. Это существенно расширило номенклатуру физических приборов и явлений, для применения в ЭВМ.
  5. ;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">Иерархичность запоминающих устройств (ЗУ). ;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">С самого начала развития ЭВМ существовало несоответствие между быстродействиями АУ и оперативной памяти. Иерархичность ЗУ в ЭВМ является важным компромиссом между емкостью, быстродействием, относительной дешевизной и надежностью.

;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">Эти принципы Дж. фон Неймана, не смотря на свою простоту и очевидность, являются фундаментальными положениями, определившими на многие годы бурное развитие вычислительной техники и кибернетики.

Поколения ЭВМ

;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">В качестве узловых моментов, определяющих появление нового поколения ВТ, обычно выбираются революционные идеи или технологические прорывы, кардинально изменяющие дальнейшее развитие средств автоматизации вычислений. Одной из таких идей принято считать концепцию вычислительной машины с хранимой в памяти программой, сформулированную Джоном фон Нейманом. Взяв ее за точку отсчета, историю развития ВТ можно представить в виде трех этапов:

  1. ;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">До Неймановского периода;
  2. ;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">Эры вычислительных машин и систем с фон-неймановской архитектурой;
  3. ;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">Пост Неймановской эпохи — эпохи параллельных и распределенных вычислений, где наряду с традиционным подходом все большую роль начинают играть отличные от фон-неймановских принципы организации вычислительного процесса.

;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">Значительно большее распространение, однако, получила привязка поколений к смене технологий. Принято говорить о «механической» эре (нулевое поколение) и последовавших за ней пяти поколениях ВС. Первые четыре поколения традиционно связывают с элементной базой вычислительных систем: электронные лампы, полупроводниковые приборы, интегральные схемы малой степени интеграции (ИМС), большие (БИС), сверхбольшие (СБИС) и ультрабольшие (УБИС) интегральные микросхемы. Пятое поколение в общепринятой интерпретации ассоциируют не столько с новой элементной базой, сколько с интеллектуальными возможностями ВС. Работы по созданию ВС пятого поколения велись в рамках четырех достаточно независимых программ, осуществлявшихся учеными США, Японии, стран Западной Европы и стран Совета экономической взаимопомощи. Ввиду того, что ни одна из программ не привела к ожидаемым результатам, разговоры о ВС пятого поколения понемногу утихают. Трактовка пятого поколения явно выпадает из «технологического» принципа. С другой стороны, причисление всех ВС на базе сверхбольших интегральных схем (СБИС) к четвертому поколению не отражает принципиальных изменений в архитектуре ВС, произошедших за последние годы. Чтобы в какой-то мере проследить роль таких изменений, воспользуемся несколько отличной трактовкой. Выделим шесть поколений ВС. Попытаемся кратко охарактеризовать каждое из них, выделяя наиболее значимые события.

;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">Первое поколение (1937–1953)

;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">На роль первой в истории электронной вычислительной машины в разные периоды претендовало несколько разработок. Общим у них было использование схем на базе электронно-вакуумных ламп вместо электромеханических реле. Предполагалось, что электронные ключи будут значительно надежнее, поскольку в них отсутствуют движущиеся части, однако технология того времени была настолько несовершенной, что по надежности электронные лампы оказались ненамного лучше, чем реле. Однако у электронных компонентов имелось одно важное преимущество: выполненные на них ключи могли переключаться примерно в тысячу раз быстрее своих электромеханических аналогов.

;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">Первой электронной вычислительной машиной чаще всего называют специализированный калькулятор ABC (Atanasoff–Berry Computer). Разработан он был в период с 1939 по 1942 год профессором Джоном Атанасовым (John V. Atanasoff, 1903–1995) совместно с аспирантом Клиффордом Берри (Clifford Berry, 1918–1963) и предназначался для решения системы линейных уравнений (до 29 уравнений с 29 переменными). ABC обладал памятью на 50 слов длиной 50 бит, а запоминающими элементами служили конденсаторы с цепями регенерации. В качестве вторичной памяти использовались перфокарты, где отверстия не перфорировались, а прожигались. ABC стал считаться первой электронной ВМ, после того как судебным решением были аннулированы патенты создателей другого электронного калькулятора — ENIAC. Необходимо все же отметить, что ни ABC, ни ENIAC не являются вычислительным машинами в современном понимании этого термина и их правильней классифицировать как калькуляторы.

;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">Вторым претендентом на первенство считается вычислитель Colossus, построенный в 1943 году в Англии около Кембриджа. Изобретателем машины был профессор Макс Ньюмен (Max Newman, 1987–1984), а изготовил его Томми Флауэрс (Tommy Flowers, 1905–1998). Colossus был создан для расшифровки немецких кодов. В состав команды разработчиков входил также Алан Тьюринг. Машина была выполнена в виде восьми стоек высотой 2,3 м, а общая длина ее составляла 5,5 м. В логических схемах машины и в системе оптического считывания информации использовалось 2400 электронных ламп. Информация считывалась с пяти вращающихся длинных бумажных колец со скоростью 5000 символов/с.

;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">Наконец, третий кандидат на роль первой электронной ВМ — уже упоминавшийся программируемый электронный калькулятор общего назначения ENIAC (Electronic Numerical Integrator and Computer — электронный цифровой интегратор и вычислитель). Идея калькулятора, выдвинутая в 1942 году Джоном Мочли (John J. Mauchly, 1907–1980) из университета Пенсильвании, была реализована им совместно с Преспером Эккертом (J. Presper Eckert, 1919–1995) в 1946 году. С самого начала ENIAC активно использовался в программе разработки водородной бомбы. Машина эксплуатировалась до 1955 года и применялась для генерирования случайных чисел, предсказания погоды и проектирования аэродинамических труб.

;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">Вычислительную машину ENIAC характеризовали следующие показатели: тактовая частота – 100 КГц; быстродействие – 5000 и 350 операций в секунду соответственно при сложении и умножении десятиразрядных десятичных чисел; количества электронных ламп и электромагнитных реле – 18000 и 1500, соответственно; потребляемая мощность – 150 киловатт; вес – 27 тонн; занимаемая площадь – 200 м ;font-family:"Times New Roman";vertical-align:super" xml:lang="ru-RU" lang="ru-RU">2 ;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">. Создание машины ENIAC оценивается в 486000 долл., эта сумма превысила начальный бюджет на 225%.

;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">Машина ENIAC – это вручную перестраиваемая конфигурация, состоявшая из трех подсистем: управляющей, собственно вычислительной и ввода-вывода. Управляющая подсистема была представлена композицией из главного программного устройства (ГПУ) и двух дополнительных программных устройств (ДПУ). Вычислительная подсистема формировалась из 20 устройств накопления и суммирования (УНС), устройства умножения (УУМ), устройства деления и извлечения квадратного корня (УДК) и трех устройств хранения таблиц (УХТ). Подсистема ввода-вывода состояла из устройств ввода (УВв) и вывода (УВыв) информации.

;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">Когда все лампы работали, инженерный персонал мог настроить ENIAC на новую задачу, вручную изменив подключение 6000 проводов. При пробной эксплуатации выяснилось, что надежность машины чрезвычайно низка — поиск неисправностей занимал от нескольких часов до нескольких суток. По своей структуре ENIAC напоминал механические вычислительные машины. 10 триггеров соединялись в кольцо, образуя десятичный счетчик, который исполнял роль счетного колеса механической машины. Десять таких колец плюс два триггера для представления знака числа представляли запоминающий регистр. (Всего в ENIAC было 20 таких регистров - УНС). Система переноса десятков в накопителях была аналогична предварительному переносу в машине Бэббиджа.

;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">Анализ ENIAC

Отметим архитектурные достоинства машина ENIAC:

  • ;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">SIMD-архитектура, распределенность и иерархия средств управления, смешанный синхронно-асинхронный способ управления вычислениями;
  • ;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">параллелизм при обработке данных (допускалась одновременная работа нескольких вычислительных устройств и параллельная обработка десятичных разрядов чисел);
  • ;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">ручная реконфигурируемость структуры (ручное программирование «неспециализированной» машины под структуру решаемой задачи);
  • ;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">однородность, модульность и масштабируемость (варьируемость количества устройств).

;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">Итак, машина ENIAC обладала совокупностью архитектурных свойств, которые присущи современным высокопроизводительным параллельным вычислительным системам. Проект ENIAC опережал возможности элементной базы (ламповой электроники).

;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">Если исходить из характеристик элементной базы 1940-х годов (а в то время ламповые элементы были самыми быстродействующими), то можно указать на следующие недостатки машины ENIAC:

  • ;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">ручное («механическое») трудоемкое программирование ВМ под структуру решаемой задачей (такое программирование длилось несколько часов или даже дней);
  • ;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">низкая надежность, обусловленная применением большого числа ламп, электромагнитных реле, механических переключателей и кабелей, а также и ручным программированием структуры машины;
  • ;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">малая емкость оперативной памяти (334 десятиразрядных десятичных чисел);
  • ;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">громоздкость и дороговизна машины (18000 электронных ламп, 486000 долларов!):
  • ;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">аппаратурная избыточность.

;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">Машина ENIAC ;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU"> – эта первая электронная ВМ, которая нашла практическое применение и была для своего времени инструментом решения сложных задач.

;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">В 1945 году группой Д. Мочли выполнялись работы по конструированию машины EDVAC. В разработке с 1945 года принимал участие Дж. фон Нейман в качестве консультанта. В 1947 г. группа Д. Мочли распалась, тем не менее, другие специалисты Электротехнической школы Мура завершили проект. Машина EDVAC вступила в строй в 1950 г. (хотя усовершенствования вносились до 1952г.)

;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">Отметим некоторые показатели EDVAC: тактовая частота – 1 МГц (на порядок выше, чем в ENIAC); быстродействие – 1000 операций в секунду над 32-разрядными двоичными числами; емкость оперативной памяти – 32768 байт; количество электронных ламп – 3000.

;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">Функциональная структура машины EDVAC

;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">Машина EDVAC состояла из центрального арифметического устройства (АУ), оперативного запоминающего устройства (ОЗУ), внешних запоминающих устройств (ВЗУ), входного и выходного узлов (УВх, УВых) и центрального управляющего устройства (УУ). В отличие от ENIAC данная ЭВМ была последовательной машиной, она не могла выполнять двух логических или арифметических операций одновременно. В то время это было технико-экономически обосновано.

;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">Арифметическое устройство предназначалось для выполнения операций сложения, вычитания, умножения, деления, извлечения квадратного корня, для преобразования чисел из двоичной системы счисления в десятичную и обратно, для пересылок чисел из одних регистров АУ в другие, а также между ОЗУ и регистрами АУ и для осуществления выбора ;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">одного из двух чисел в зависимости от знака третьего числа ;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">. Последняя операция использовалась для передачи управления ;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">(условного перехода) ;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU"> от одной команды программы к другой. Числа в АУ обрабатывались последовательно, начиная с последнего значащего разряда, и в каждый момент времени выполнялось только одна операция. Регистры АУ – это линии задержки на одно 32-разрядное двоичное слово.

;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">Устройство управления предназначалось для координации работы остальных устройств ЭВМ, в частности, оно формировало поток команд в АУ. Синхронизация работы всех устройств ЭВМ осуществлялась от единого источника импульсов, названного “часами” (сейчас, это генератор тактовых или синхронизирующих импульсов).

;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">В машине EDVAC первый двоичный разряд каждого слова использовался для идентификации команд и чисел, причем единица соответствовала команде, а нуль – числу. В EDVAC использовались одноадресные команды, для задания кода операции и адреса операнда в ОЗУ отводилось соответственно 8 и 13 разрядов.

;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">Таким образом, машина ;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">EDVAC была полностью автоматическим программируемым вычислительным средством ;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">.

;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">Анализ машины EDVAC

;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU"> ;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">Машина EDVAC имела жесткую функциональную структуру. По своей архитектуре EDVAC относится к классу SISD (Single Instruction stream / Single Data stream), если следовать классификации М. Флинна. В EDVAC одиночный поток команд обрабатывал одиночный поток данных. Три поколения ЭВМ – это по сути эволюционные модификации машины с архитектурой SISD.

;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">Подчеркнем архитектурные особенности машины EDVAC:

  • ;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">SISD-архитектура, синхронный метод управления устройствами;
  • ;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">автоматизация вычислений (возможность хранения программы в памяти и ее автоматической модификации);
  • ;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">последовательный способ обработки информации;
  • ;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">фиксированность структуры (невозможность даже ручного реконфигурирования, за исключением ВЗУ);
  • ;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">конструктивная неоднородность.

;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">Архитектурные решения, положенные в основу ЭВМ, привели к простоте ее реализации: потребовалось около 3000 электронных ламп (вместо 18000 в ENIAC). Уровень сложности и достигнутые технические характеристики (показатели производительности, емкости памяти и надежности) ЭВМ вполне отвечали уровню техники и потребностям 50-х годов 20 столетия. В самом деле, машина EDVAC характеризовалась следующими параметрами:

  • ;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">количество двоичных разрядов для представления чисел – 32,
  • ;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">тактовая частота – 1 МГц,
  • ;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">емкость оперативной памяти – бит = 32 Кбайт.

;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">Несмотря на последовательный характер работы, вычислительная машина EDVAC не уступала по производительности ENIAC. Например, быстродействия ENIAC и EDVAC при выполнении операций умножения оценивались соответственно величинами: 357 опер./с (над 10-разрядными десятичными числами) и 1000 опер./с (над 32-разрядными двоичными числами).

;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">Таким образом, ;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">электронные вычислительные машины ENIAC и EDVAC отражают дуализм в развитии цифровых средств информатики, говоря иначе, констатируют неизбежность двух начал: параллельных и последовательных архитектур ;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">.

;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">Второе поколение (1954–1962)

;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">Второе поколение характеризуется рядом достижений в элементной базе, структуре и программном обеспечении. Принято считать, что поводом для выделения нового поколения ВМ стали технологические изменения, и, главным образом, переход от электронных ламп к полупроводниковым диодам и транзисторам со временем переключения порядка 0,3 мс.

;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">Первой ВМ, выполненной полностью на полупроводниковых диодах и транзисторах, стала TRADIC (TRAnisitor DIgital Computer), построенная в Bell Labs по заказу военно-воздушных сил США как прототип бортовой ВМ. Машина состояла из 700 транзисторов и 10 000 германиевых диодов. За два года эксплуатации TRADIC отказали только 17 полупроводниковых элементов, что говорит о прорыве в области надежности, по сравнению с машинами на электронных лампах. Другой достойной упоминания полностью полупроводниковой ВМ стала TX-0, созданная в 1957 году в Массачусетсском технологическом институте.

;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">Технологический прогресс дополняют важные изменения в архитектуре ВМ. Прежде всего, это касается появления в составе процессора ВМ индексных регистров, что позволило упростить доступ к элементам массивов. Прежде, при циклической обработке элементов массива, необходимо было модифицировать код команды, в частности хранящийся в нем адрес элемента массива. Как следствие, в ходе вычислений коды некоторых команд постоянно изменялись, что затрудняло отладку программы. С использованием индексных регистров адрес элемента массива вычисляется как сумма адресной части команды и содержимого индексного регистра. Это позволяет обратиться к любому элементу массива, не затрагивая код команды, а лишь модифицируя содержимое индексного регистра.

;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">Вторым принципиальным изменением в структуре ВМ стало добавление аппаратного блока обработки чисел в формате с плавающей запятой. До этого обработка вещественных чисел производилась с помощью подпрограмм, каждая из которых имитировала выполнение какой-то одной операции с плавающей запятой (сложение, умножение и т. п.), используя для этой цели обычное целочисленное арифметико-логическое устройство.

;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">Третье значимое нововведение в архитектуре ВМ — появление в составе вычислительной машины процессоров ввода/вывода, позволяющих освободить центральный процессор от рутинных операций по управлению вводом/выводом и обеспечивающих более высокую пропускную способность тракта «память — устройства ввода/вывода» (УВВ).

;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">Наконец, нельзя не отметить значительные события в сфере программного обеспечения, а именно создание языков программирования высокого уровня: Фортрана (1956), Алгола (1958) и Кобола (1959).

;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">Третье поколение (1963–1972)

;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">Третье поколение ознаменовалось резким увеличением вычислительной мощности ВМ, ставшим следствием больших успехов в области архитектуры, технологии и программного обеспечения. Основные технологические достижения связаны с переходом от дискретных полупроводниковых элементов к интегральным микросхемам и началом применения полупроводниковых запоминающих устройств, начинающих вытеснять ЗУ на магнитных сердечниках. Существенные изменения произошли и в архитектуре ВМ. Это, прежде всего, микропрограммирование как эффективная техника построения устройств управления сложных процессоров, а также наступление эры конвейеризации и параллельной обработки. В области программного обеспечения определяющими вехами стали первые операционные системы и реализация режима разделения времени.

;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">В первых ВМ третьего поколения использовались интегральные схемы с малой степенью интеграции (small-scale integrated circuits, SSI), где на одном кристалле размещается порядка 10 транзисторов. Ближе к концу рассматриваемого периода на смену SSI стали приходить интегральные схемы средней степени интеграции (medium-scale integrated circuits, MSI), в которых число транзисторов на кристалле увеличилось на порядок. К этому же времени относится повсеместное применение многослойных печатных плат. Все шире востребуются преимущества параллельной обработки, реализуемые за счет множественных функциональных блоков, совмещения во времени работы центрального процессора и операций ввода/вывода, конвейеризации потоков команд и данных.

;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">В 1964 году Сеймур Крей (Seymour Cray, 1925–1996) построил вычислительную систему CDC 6600, в архитектуру которой впервые был заложен функциональный параллелизм. Благодаря наличию 10 независимых функциональных блоков, способных работать параллельно, и 32 независимых модулей памяти удалось достичь быстродействия в 1 MFLOPS (миллион операций с плавающей запятой в секунду). Пятью годами позже Крей создал CDC 7600 с конвейеризированными функциональными блоками и быстродействием 10 MFLOPS. CDC 7600 называют первой конвейерной вычислительной системой (конвейерным процессором). Революционной вехой в истории ВТ стало создание семейства вычислительных машин IBM 360, архитектура и программное обеспечение которых на долгие годы служили эталоном для последующих больших универсальных ВМ (mainframes). В машинах этого семейства нашли воплощение многие новые для того периода идеи, в частности: предварительная выборка команд, отдельные блоки для операций с фиксированной и плавающей запятой, конвейеризация команд, кэш-память. К третьему поколению ВС относятся также первые параллельные вычислительные системы: SOLOMON корпорации Westinghause и ILLIAC IV — совместная разработка Иллинойского университета и компании Burroughs. Третье поколение ВТ ознаменовалось также появлением первых конвейерно-векторных ВС: TI-ASC (Texas Instruments Advanced Scientific Computer) и STAR-100 фирмы СВС.

;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">Четвертое поколение (1972–1984)

;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">Отсчет четвертого поколения обычно ведут с перехода на интегральные микросхемы большой (large-scale integration, LSI) и сверхбольшой (very large-scale integration, VLSI) степени интеграции. К первым относят схемы, содержащие около 1000 транзисторов на кристалле, в то время как число транзисторов на одном кристалле VLSI имеет порядок 100 000. При таких уровнях интеграции стало возможным уместить в одну микросхему не только центральный процессор, но и вычислительную машину (ЦП, основную память и систему ввода/вывода).

;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">Конец 70-х и начало 80-х годов — это время становления и последующего победного шествия микропроцессоров и микроЭВМ, что, однако, не снижает важности изменений, произошедших в архитектуре других типов вычислительных машин и систем.

;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">Одним из наиболее значимых событий в области архитектуры ВМ стала идея вычислительной машины с сокращенным набором команд (RISC, Redused Instruction Set Computer), выдвинутая в 1975 году и впервые реализованная в 1980 году. В упрощенном изложении суть концепция RISC заключается в сведении набора команд ВМ к наиболее употребительным простейшим командам. Это позволяет упростить схемотехнику процессора и добиться резкого сокращения времени выполнения каждой из «простых» команд. Более сложные команды реализуются как подпрограммы, составленные из быстрых «простых» команд.

;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">В ВМ и ВС четвертого поколения практически уходят со сцены ЗУ на магнитных сердечниках и основная память строится из полупроводниковых запоминающих устройств (ЗУ). До этого использование полупроводниковых ЗУ ограничивалось лишь регистрами и кэш-памятью.

;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">В сфере высокопроизводительных вычислений доминируют векторные вычислительные системы, более известные как суперЭВМ. Разрабатываются новые параллельные архитектуры, однако подобные работы пока еще носят экспериментальный характер. На замену большим ВМ, работающим в режиме разделения времени, приходят индивидуальные микроЭВМ и рабочие станции (этим термином обозначают сетевой компьютер, использующий ресурсы сервера).

;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">Пятое поколение (1984–1990)

;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">Главным поводом для выделения вычислительных систем второй половины 80-х годов в самостоятельное поколение стало стремительное развитие ВС с сотнями процессоров, ставшее побудительным мотивом для прогресса в области параллельных вычислений. Ранее параллелизм вычислений выражался лишь в виде конвейеризации, векторной обработки и распределения работы между небольшим числом процессоров. Вычислительные системы пятого поколения обеспечивают такое распределение задач по множеству процессоров, при котором каждый из процессоров может выполнять задачу отдельного пользователя.

;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">В рамках пятого поколения в архитектуре вычислительных систем сформировались два принципиально различных подхода: архитектура с совместно используемой памятью и архитектура с распределенной памятью.

;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">Шестое поколение (1990–)

;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">На ранних стадиях эволюции вычислительных средств смена поколений ассоциировалась с революционными технологическими прорывами. Каждое из первых четырех поколений имело четко выраженные отличительные признаки и вполне определенные хронологические рамки. Последующее деление на поколения уже не столь очевидно и может быть понятно лишь при ретроспективном взгляде на развитие вычислительной техники. Пятое и шестое поколения в эволюции ВТ — это отражение нового качества, возникшего в результате последовательного накопления частных достижений, главным образом в архитектуре вычислительных систем и, в несколько меньшей мере, в сфере технологий.

;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">Поводом для начала отсчета нового поколения стали значительные успехи в области параллельных вычислений, связанные с широким распространением вычислительных систем с массовым параллелизмом. Особенности организации таких систем, обозначаемых аббревиатурой MPP (massively parallel processing), будут рассмотрены в последующих лекциях. Здесь же упрощенно определим их как совокупность большого количества (до нескольких тысяч) взаимодействующих, но достаточно автономных вычислительных машин. По вычислительной мощности такие системы уже успешно конкурируют с суперЭВМ, которые, как ранее отмечалось, по своей сути являются векторными ВС. Появление вычислительных систем с массовым параллелизмом дало основание говорить о производительности, измеряемой в TFLOPS (1 TFLOPS соответствует 10 ;font-family:"Times New Roman";vertical-align:super" xml:lang="ru-RU" lang="ru-RU">12 ;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU"> операциям с плавающей запятой в секунду).

;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">Вторая характерная черта шестого поколения — резко возросший уровень рабочих станций. В процессорах новых рабочих станций успешно совмещаются RISC-архитектура, конвейеризация и параллельная обработка. Некоторые рабочие станции по производительности сопоставимы с суперЭВМ четвертого поколения. Впечатляющие характеристики рабочих станций породили интерес к гетерогенным (неоднородным) вычислениям, когда программа, запущенная на одной рабочей станции, может найти в локальной сети не занятые в данный момент другие станции, после чего вычисления распараллеливаются и на эти простаивающие станции.

;font-family:"Times New Roman"" xml:lang="ru-RU" lang="ru-RU">Наконец, третьей приметой шестого поколения в эволюции ВТ стал взрывной рост глобальных сетей. Завершая обсуждение эволюции ВТ, отметим, что верхняя граница шестого поколения хронологически пока не определена и дальнейшее развитие вычислительной техники может внести в его характеристику новые коррективы. Не исключено также, что последующие события дадут повод говорить и об очередном поколении.

Департамент образования Владимирской области.

Муниципальное общеобразовательное учреждение –

Средняя общеобразовательная школа № 6

«История развития математики на Земле»

Ученика 8 класса «Б»

Карякина Павла

Руководитель – Шубина И. Н.

Математика - царица наук, арифметика – царица математики.
К. Гаусс

Геометрия – это наука хорошо измерять.

Вдохновение нужно в геометрии, как и в поэзии.
А. С. Пушкин

Вступление

1. Арифметика каменного века

2. Числа начинают получать имена

3. Великолепная семерка

4. Живая счетная машина

5. Сорок и шестьдесят

6. Операции над числами

7. Дюжины и гроссы

8. Первые цифры

9. Как в древности выполняли арифметические действия

10. Абак и пальцевый счет

Заключение

Приложение. Рисунки

Каждый день на уроках математики мы узнаем о свойствах чисел и фигур, решаем уравнения, задачи, строим графики, учимся складывать десятичные и обыкновенные дроби и т.д. Но кто и когда придумал цифры, стал выполнять над ними арифметические действия, кто дал им имена, кем и когда были придуманы дроби, где впервые стали решать задачи с помощью уравнений, когда возникли отрицательные числа, - про все это я постараюсь дать ответы в своем реферате.
Для этого нам придется побывать и на стойбищах первобытных людей и на островах Океании, заглянуть в Древние Египет и Вавилон, заглянем в первую книгу по математике в Древней Руси, написанную Кирике Новгородцем, в « Арифметику » Леонтия Магницкого, которую чуть ли не наизусть знал великий русский ученый Михаил Васильевич Ломоносов.

1. АРИФМЕТИКА КАМЕННОГО ВЕКА

Люди научились считать 25 – 30 тысяч лет тому назад. Несколько десятков лет назад ученые – археологи обнаружили стойбища русских людей. В нем они нашли волчью кость, на которую древний охотник нанес 55 зарубок. Узор на кости состоял из одиннадцати групп, по пять зарубок в каждой. При этом первые пять групп он отделил от остальных круглой чертой. Позднее в Сибири и других местах были найдены сделанные в ту же далекую эпоху каменные орудия и украшения, на которых, то же были черточки и точки сгруппированные по 3, по 5, или по 7. Первыми понятиями математики, с которыми они столкнулись, были « меньше », « больше » и « столько же ». Если одно племя меняло пойманных им рыб на сделанные людьми другого племени каменные ножи, не нужно было считать, сколько принесли рыб и сколько ножей. Достаточно было положить рядом с каждой рыбой один нож, чтобы обмен состоялся. Чтобы с успехом заниматься сельским хозяйством, понадобились арифметические знания. Без подсчёта дней трудно было определить, когда надо засевать поля, когда начинать полив, когда ждать потомства от животных. Надо было знать, сколько овец в стаде, сколько мешков зерна положено в амбаре.

И вот более 8 тысяч лет тому назад пастухи стали делать из глины кружки – по одному на каждую овцу. Но в его стаде были не только овцы – он пас и коров, и коз, и ослов. Поэтому пришлось делать из глины и другие фигурки. Если овцы приносили приплод, пастух прибавлял к кружкам новые, а если часть овец шла на мясо, несколько кружков приходилось убирать. Так, ещё не умея считать, занимались древние люди арифметикой.

2. ЧИСЛА НАЧИНАЮТ ПОЛУЧАТЬ ИМЕНА

Перекладывать каждый раз глиняные фигурки с места на место было довольно утомительным занятием. Удобнее было сначала пересчитать товары, а уж потом приступать к обмену. Но прошло много тысячелетий, прежде чем люди научились пересчитывать их. Для этого им пришлось придумать названия для чисел.

Ученые считают, что сначала название придумали числа 1 и 2. Когда римляне придумывали имя числу 1, они исходили из того, что солнце на небе всегда одно - « солюс ». А название для числа 2 связано с предметами, встречающимися попарно, - крыльями, ушами и т. д. Но бывало, что числам 1 и 2 давали иные имена. Их называли « я » и « ты ». А всё, что шло после 2, называлось « много ». Но потом понадобилось называть и другие числа. И тут придумали замечательный выход: числа стали называть, повторяя несколько раз названия для единиц и двоек. Например, на языке папуасских племён числительное « один » звучит «урапун », а числительное « два » - « окоза ». Число 3 они назвали « окоза – урапун », а число 4 – « окоза – окоза ». Так они дошли до числа 6, которое получило имя « окоза – окоза – окоза ». А дальше у них шло знакомое для нас слово - « много ».

Позднее других получило имя числительное 3. А так как до того племена считали «один», «два», «много», то это новое числительное стали применять вместо слова «много». И сейчас мать, рассердившись на непослушного сына, говорит ему: « Что я, три раза должна повторять одно и то же!» Иногда числом три обозначали весь окружающий человека мир – его делили на земное, подземное и небесное царство. Поэтому число три стало у многих народов священным. Другие народы делили мир не по вертикали, а по горизонтали. Они знали четыре стороны света - восток, запад, север, юг, знали четыре главных ветра. У этих народов главную роль играло число четыре, а не число три. А вот слово для обозначения « тысячи » возникло 5 – 7 тысяч лет тому назад.

3. ВЕЛИКОЛЕПНАЯ СЕМЕРКА.

Я уже говорил, что папуасы после «окоза – окоза» говорили слово которое на их языке обозначало «много». Так было, вероятно, и у других народов. Во всяком случае, в русских поговорках и пословицах слово «семь» часто выступает в роли слова «много»: «Семеро одного не ждут», «Семь бед - один ответ», «Семь раз отмерь – один раз отрежь» и т.д.

То, что 7 – число особое люди считали очень давно. Ведь еще древние охотники, а потом и древние земледельцы и скотоводы наблюдали за небом. Их внимание привлекало созвездие Большой Медведицы – изображение семи звезд этого созвездия часто встречаются на древнейших изделиях.

Существовало ещё более глубокая связь между небом и «семеркой». Следя за изменениями формы лунного диска, люди заметили, что через семь дней после новолуния на небе видна половина этого диска. А ещё через семь дней вся Луна сияет на полуночном небе. Проходит еще семь дней - и опять остается половина диска, а еще через семь дней на ночном небе сияют только звезды, а Луны совсем не видно. Так пришли они к понятию о лунном месяце, состоящих из четырех семерок дней.

Особенно чтили число 7 на Древнем Востоке. Несколько тысячелетий назад между реками Тигром и Евфратом жил народ Шумеры. Они обозначали число 7 тем же знаком, что и всю вселенную. Почему они так делали? Некоторые ученые думают, что они выражали этим числом шесть главных направлений (вверх, вниз, вперед, назад, влево, вправо) да ещё то место, от которого идет этот отсчет. От шумеров и вавилонян семерки перешли к другим народам. Древние греки насчитывали, например, семь чудес света. Да и сейчас мы пользуемся семидневной неделей.

4. ЖИВАЯ СЧЕТНАЯ МАШИНА.

Чем больше зерна собирали с полей люди, чем многочисленнее становились их стада, тем большие числа становились им нужны. Нужны были названия позволяющие называть не единицы, а десятки и сотни. Если попробовать сказать слово « сто », пользуясь папуасскими названиями, придется пятьдесят раз повторять слово окоза.

Поэтому был необходим совершенно новый подход и старый метод счёта вытеснил новый – счёт по пальцам. Пальцы оказались прекрасной вычислительной машиной. С их помощью можно было считать до 5, а если взять две руки то и до десяти. А в странах где люди ходили босиком то и до двадцати.

А научившись считать по пальцам до десяти, люди сделали следующий шаг вперёд и стали считать десятками. И если одни папуасские племена умели считать лишь до шести, то другие доходили в счёте до нескольких десятков. Только для этого приходилось приглашать сразу много счетчиков. Например, чтобы сосчитать всего – навсего до 30, пришлось бы работать трём папуасам. И сейчас есть племена, которые говорят « две руки » вмесо « десять » и « руки и ноги » вместо « двадцать ». А в Англии первые десять чисел называют общим именем – « пальцы »

5. СОРОК И ШЕСТЬДЕСЯТ.

Скачок от десятка к сотне был сделан не сразу. Сначала следующим за десятью узловым числом стало у одних народов число 40, а у других – 60. Число сорок играло важную роль в старо - русской системе мер: в пуде считалось 40 фунтов, в бочке – 40 ведер и т.д. Но были народы, у которых в самой глубокой древности счет шел до шести. Когда они перешли на счет десятками, то особое имя у них получили не четыре, а шесть десятков. Так случилось у шумеров и древних вавилонян. От них почитания числа шестьдесят перешло к древним грекам. Во многих календарях считалось, что год состоит из 360, то есть шести шестидесятков, дней. Но самое удивительное то, что следы счета шестидесятками сохранились до наших дней. Ведь до сих пор мы делим час на 60 минут, а минуту - 60 секунд. Окружность делим на 360 градусов, градус - на 60 минут, а минуту – на 60 секунд. Но потребность людей в больших числах росли и росли. Наступил момент, когда уже и 40, и 60, и даже 100 перестали казаться слишком большими числами. Тогда для того, чтобы сказать « очень много », стали говорить « сорок сороков » или «шестьдесят шестидесятков ». Шумеры называли шестьдесят шестидесятков словом «шар». Это слово стало воплощать у них идею Вселенной. А у народов пользующихся сотней, идею невообразимого множества воплощала сотня сотен. В русском языке она получила название «тьма». И сейчас, увидев большую толпу, мы восклицаем: «Народу – тьма!»

6. ОПЕРАЦИЯ НАД ЧИСЛАМИ.

С операциями сложения и вычитания люди имели дело задолго до того, как числа получили имена. Когда несколько сборщиков кореньев или рыболовов складывали в одно место свою добычу, они выполняли операцию сложения. Правда, при этом складывались не числа, а совокупности (или, как говорят математики, множество) предметов. А когда из собранных орехов часть шла в пищу, люди выполняли вычитание – запас орехов уменьшался. С операцией умножение люди познакомились, когда стали сеять хлеб и увидели, что собранный урожай в несколько раз больше, чем количество посеянных семян. Наконец, когда добытое на охоте мясо животных или собранные орехи делили поровну между всеми членами племени, выполняли операцию деления. Но должны были пройти тысячелетия, пока люди поняли, что складывать, вычитать, умножать и делить можно не сами совокупности предметов, а числа. Так люди узнали, что «два плюс два равно четыре».

7. ДЮЖИНЫ И ГРОССЫ.

Серьезным соперником десятичной системы счета оказалась двенадцатеричная. Вместо десятков применяли при счете дюжины, то есть группы из двенадцати предметов. Во многих странах даже теперь некоторые товары, например вилки, ножи, ложки, продают дюжинами, то есть по двенадцать штук. А еще в начале двадцатого века в торговле применяли и дюжину дюжин, которую называли «гроссом», то есть «большой дюжиной».

Древние люди давно знали путь, который проходит Солнце за год по звездному небу. Когда они раздели год на двенадцать месяцев, то каждую часть этого пути назвали «домом Солнца». Так возникли созвездия Зодиака.

Откуда же взялся этот интерес к дюжине? Ответить на этот вопрос помогли ученым глиняные таблички, на которых был написан самый древний шумерский счет. С удивлением обнаружили, что, хотя шумеры потом научились считать до таких громадных чисел, как 12.960.000 («шар шаров» - так называли это число), когда – то они считали не лучше, чем папуасы. Только вместо «урапун» и «окоза» у них были другие слова: «бе» и «ПЕШ». И счет у них шел так, «бе»(то есть один), «бе – бе»(то есть два), «ПЕШ»(то есть три, « ПЕШ – бе» - четыре, число двенадцать имело имя « ПЕШ –ПЕШ – ПЕШ- ПЕШ». Такой счет можно объяснить, предположив, что шумеры считали в древности не по пальцам, а по суставам пальцев.

Поскольку 12 было чтимым числом, то число, следующее за ним, казалось чем – то излишним, чрезмерным. Несчастливым считался у шумеров и 13 месяц, который им приходилось время от времени вставлять в свой календарь, что бы согласовать лунные месяцы с солнечным годом. Отсюда, вероятно, и пошел предрассудок, по которому число 13 считают несчастливым и называют его «чертовой дюжиной».

Несколько раз совершались попытки ввести двенадцатеричную систему счисления, то есть вместо десятков и сотен считать дюжинами и гроссами. Однако дальше разговора дело не пошло: непосильной оказалась задача переучить всех на новые обозначения и правила счета. Разумеется, победа десятичной системы счисления над всеми соперницами объясняется тем, что у человека на каждой руке по пять пальцев. Но странные повороты делает история! Именно двоичная система счета оказалась самой полезной для современной техники. На основе двоичной системе работают современные быстродействующие вычислительные машины.

8. ПЕРВЫЕ ЦИФРЫ.

И так, на папирусе ли, на глине ли, на камне ли, но людям необходимо было изображать числа. И тут был сделан весьма важный шаг: люди догадались писать вместо группы единиц один знак. Писать много раз один и тот же знак, разумеется, весьма неудобно. Поэтому постепенно отдельные знаки стали сливаться вместе. Так появились особые обозначения для чисел. Эти знаки уже были цифрами.

Одна из древнейших нумераций египетская. Для записи чисел древние египтяне употребляли иероглифы, означающие (последовательно): единицу, десять, сто, тысячу, десять тысяч, сто тысяч (лягушка), миллион (человек с поднятыми руками), десять миллионов.

У древних греков были две системы обозначения чисел. По более старой из них числа от 1 до 4 обозначались с помощью вертикальных черточек, а для числа 5 применялась буква Г – первая буква греческого слова «пента», то есть «пять». Далее использовались буквы: Н – 100, Х -1000, М – 10 000 и т. д.

Но эта система уступила место иной, в которой числа обозначали буквами с черточками над ними. В древнегреческом алфавите было 24 буквы. К ним прибавили три вышедшие из употребления старинные буквы и разбили получившиеся 27 букв на 3 группы, по 9 букв в каждой. Первой девяткой букв греки обозначали числа от 1 до 9. Например, первой буквой своего алфавита альфа они обозначали число 1. Второй бета – число два и т. д. до буквы тета, которая обозначала число 9. Вторая девятка букв обслуживала числа от 10 до 90, а третья – числа от ста до девятьсот.

Числовые обозначения в Древнем Риме напоминали древний способ греческой нумерации. У римлян были специальные обозначения не только для чисел 1, 10, 100 и 1000, но и для чисел 5, 50, 500. Например: Х – 10, С – 100, D – 500 и М – 1000. Обозначая числа, римляне записывали столько цифр, что бы их сумма давала нужное число. Например число 362 представляли так: CCCLXII , как видим, сначала идут большие числа потом меньшие. Но иногда римляне писали меньшую цифру пере большей. Это означало, что нужно не складывать, а вычитать. Например, число 9 обозначалось IX (без одного десять). Самым большим числом, которое умели обозначать римляне, было 100 000.

Хотя римская нумерация была не слишком удобной, она распространилась почти по всей ойкумене – так называли в древности греки известный им обитаемый мир.

В древности на Руси до числа 10 000. Оно в самых старинных памятниках писали числа при помощи букв славянского алфавита, над которыми ставили особый значок – титло. Это делалось для того, чтобы отличить их от обычных слов. Вот, например, запись числа 444 (см. рисунок …). Но алфавитная нумерация имела и крупный недостаток: с их помощью нельзя обозначать сколь угодно большие числа. Правда, славяне умели записывать и большие числа, но для этого в алфавитной системе добавляли новые обозначения. Числа 1000, 2000 и т. д. записывали теме же буквами, что 1, 2 и т. д. только слева внизу ставили специальный знак. В хозяйственной жизни довольствовались сравнительно небольшими числами – так называемым «малым счетом», который доходило называется «тьма», то есть темное число, которое нельзя ясно представить.

В дальнейшем граница малого счета была отодвинута до 10 в восьмой степени, до числа «тьма тем». Но наряду с этим «малым числом» употреблялась вторая система, называвшаяся «великим числом или счетом». В нем употреблялись более высокие разряды: тьма – 10 в шестой степени, легион – 10 в двенадцатой степени, леодр – 10 в двадцать четвертой степени, ворон – десять в сорок восьмой степени, колода – десять воронов – 10 в сорок девятой степени. Для обозначения этих больших чисел наши предки употребляли оригинальный способ: число единиц любого из перечисленных высших разрядов обозначалось той же буквой, что и простые единицы, но окруженной для каждого числа соответственным бордюром.

В первом печатном русском учебнике математики Л. Ф. Магницкого даются уже сейчас термины для больших чисел (миллион, биллион, триллион, квадриллион, квинтиллион).

Характерным «числолюбцем» Древней Руси был монах Кирик. Он написал в 1134 году книгу «Кирика – диакона Новгородского Антониева монастыря учения, им же ведати человеку числа всех лет». В этой книге Кирик подсчитывает, сколько месяцев, сколько дней, сколько часов он прожил вычисляет в месяцах, неделях и в днях время, прошедшее до 1134 года от «сотворения мира», выполняет разные вычисления дней церковных праздников на будущее время.

При счисления времени Кирик употребляет «дробные часы», подразумевая под ними пятые, двадцать пятые, сто двадцать пятые и т.д. доли часа. Доходя в этом счете до седьмого дробного часа, каковых в двенадцатичасовом дне оказывается 937 500, он заявляет: «… больше всего не бывает». Это, по-видимому, означает, что более мелких делений часа не употребляли.

Алфавитная нумерация была мало пригодна для оперирования с большими числами. В ходе развития человеческого общества эта система уступила место позиционным системам.

Первой известной нам позиционной системой счисления была шестидесятеричная система вавилонян. Как же вавилоняне записывали свои цифры? Они поступали так: записывали все числа от 1 до 59 по десятичной системе, применяя принцип сложения. При этом они пользовались двумя знаками: прямым клином – для обозначения единицы и лежачим клином – для десяти. Эти знаки служили цифрами в их системе (см. рис…) Таким образом «цифры», то есть все числа от 1 до 59, вавилоняне записывали по десятичной системе, а число в целом – по системе с основанием шестьдесят. Поэтому – то мы называем их систему шестидесятеричной. Шестидесятеричная система вавилонян сыграла большую роль в развитие математики и астрономии. Следы её сохранились до наших дней. Так, мы до сих пор делим час на 60 минут, а минуту на 60 секунд. Точно так же окружность мы дели на 360 равных частей (градусов).

В начале нашей эры индейцы племени майя, которые жили на полуострове Юкотан в Центральной Америке, пользовались другой позиционной системе с основанием 20. Свои цифры индейцы майя, как и вавилоняне, записывали, пользуюсь принципом сложения. Единицу они обозначали точкой, а пять – горизонтальной чертой (см. рис. …), но в этой системе был знак для нуля. Он напоминал по своей форме полузакрытый глаз.

Десятичная позиционная система впервые сложилась в Индии не позднее шестого века нашей эры. Здесь же был введен символ для нуля.

Итак, позиционная система счисления возникли независимо одна от другой в древнем Двуречье, у племени майя и, наконец, в Индии. Все это говорит о том, что возникновение позиционного принципа не было случайностью.
Каковы же были предпосылки для его создания? Чтобы ответить на эти вопросы, мы снова обратимся к истории. В древнем Китае, Индии и в некоторых других странах существовали системы записи, построенные на мультипликативном принципе. Пусть, например, десятки обозначаются символом Х, а сотни – С. Тогда запись числа 323 схематично будет выглядеть так: 3С2Х3.

В таких системах для записи одинакового числа единиц, десятков, сотен или тысяч применяются одни и те же символы, но после каждого символа пишется название соответствующего разряда.

Следующей системой к позиционному принципу было опускание разрядов при письме (подобно тому как мы говорим «три двадцать», а не «три рубля двадцать копеек»). Но при записи больших чисел по системе с основанием 10 очень часто был необходим символ для обозначения нуля.

Как же появился нуль? Мы знаем, что уже вавилоняне употребляли межразрядовый знак. Начиная со второго века до нашей эры греческие ученые познакомились с многовековыми астрономическими наблюдениями вавилонян. Вместе с их вычислительными таблицами они переняли и вавилонскую шестидесятеричную систему счисления, но только числа от 1 до 59 записывали не с помощью клиньев, а в своей, алфавитной нумерации. Но самое замечательное было то, что для обозначения пропущенного шестидесятеричного разряда греческие астрономы начали употреблять символ О (первая буква греческого слова – ничто). Этот знак, по-видимому, и был прообразом нашего нуля. Действительно, индийцы, владевшие уже мультипликативным принципом записи чисел, как раз между вторым и шестым веками нашей эра познакомились с греческой астрономией. Одновременно они познакомились с шестидесятеричной нумерацией и греческим круглым нулем. Индийцы и соединили принципы нумерации греческих астрономов со своей десятичной системой. Это и был завершающий шаг в создании нашей нумерации. Из Индии новая система распространилась по всему миру. В страны Европы новая индийская нумерация была занесена арабами в десятом – тринадцатом веках (отсюда и название «арабские цифры»). Постепенное изменение написание цифр можно проследить по рисунку …

9. КАК В ДРЕВНОСТИ ВЫПОЛНЯЛИ АРИФМЕТИЧЕСКИЕ ДЕЙСТВИЯ.

Если со сложением и вычитанием ни у египтян, ни у вавилонян, то хуже обстояло дело с умножением. И тут египтяне придумали интересный выход: они заменили умножением на любое число удвоением, то есть сложением числа самим с собой. Например, если надо было умножить число 34 на 5, то поступали так: умножали 34 сначала на 2, потом ещё раз на 2. Записывали столбиками (конечно, в своих обозначениях чисел) ...

1

34

2

68

4

136

Похожий способ умножения применялся через несколько тысяч лет русскими крестьянами. Пусть требуется умножить 37 на 32. Составляли два столбца чисел – один удвоением, начиная с числа 37, другое раздвоением (то есть делением на два), начиная с числа 32:

37

32

74

16

148

8

296

4

592

2

1184

1

По другому пути пошли в Вавилоне. Они сосчитали раз навсегда с помощью повторного сложения произведения и полученные результаты занесли в таблицу. Вавилоняне любили составлять таблицы. У них были таблицы квадратов и кубов, обратных чисел и даже сумм квадратов и кубов.

10. АБАК И ПАЛЬЦЕВЫЙ СЧЕТ.

Греки и римляне производили вычисления с помощью специальной счетной доски - абака. Доска абака была разделена на полоски. Каждая полоска назначалась для откладывания тех или иных разрядов чисел: в первую полоску ставили столько камешков или бобов, сколько в числе единиц, во вторую полоску - сколько в нем десятков, в третью - сколько сотен, и так далее. На рисунке показано число 510 742. Так как у римлян камешек называли калькулюс (сравните с русским словом "галька"), то счет на абаке получил название калькуляция. И сейчас подсчет расходов называют калькуляцией, а человека, выполняющего этот подсчет - калькулятором. Но после того как два десятка лет тому назад были сделаны маленькие приборы, выполняющие за считанные секунды сложные расчеты, название "калькулятор" перешло к ним.
Один и тот же камешек на абаке мог означать и единицы, и десятки, и сотни, и тысячи - все дело лишь в том, на какой полоске он лежал. Чаще всего абаком пользовались для денежных расчетов. Наши счеты представляют собой также абак, в котором место полосок занимают проволоки для единиц, десятков и т. д. А у китайцев на каждой проволоке не по десять шариков, как в наших счетах, а по семь. Последние два шарика отделены от первых, и каждый из них обозначает пять. Когда при расчетах набирается пять шариков, вместо них откладывают один шарик второго отделения счетов. Такое устройство китайских счетов уменьшает необходимое число шариков.
Счет на абаке сменил более древний счет на пальцах. Приверженцы старого метода стали его совершенствовать. Они научились даже умножать на пальцах однозначные числа от 6 до 9. Для этого на одной руке вытягивали столько пальцев, на сколько первый множитель превосходит число 5, а на второй делали то же самое для второго множителя. Остальные пальцы загибали. Потом бралось число вытянутых пальцев и умножалось на 10, далее перемножались числа, показывавшие, сколько загнуто пальцев на руках. К числу вытянутых пальцев, умноженному на 10, добавлялось полученное произведение.
В дальнейшем пальцевой счет был усовершенствован, и с помощью пальцев научились показывать числа до 10 000. А китайские купцы торговались, взяв друг друга за руки и указывая цену нажатием на определенные суставы пальцев.

Возникновение чисел позволило решать сложные задачи, встречавшиеся в практической деятельности, пришлось, кроме натуральных чисел, придумать другие числа – обыкновенные, десятичные дроби, отрицательные числа, научиться использовать пропорции, а потом создать новую науку – алгебру, позволявшую решать любые задачи с помощью уравнений.

Когда – то числа служили только для решения практических задач. А потом их стали изучать – узнавать их свойства. С помощью чисел выражали и такие понятия, как справедливость, совершенство, дружба. Ученые установили, как по записи числа узнать, на какие другие числа они делятся. Они научились находить простые числа и стали изучать их свойства.

Много веков мечтали люди создать машины, которые бы сами выполняли порученные им работы – ткали и пряли, ковали и вытачивали. Чтобы создать такие автоматы, понадобились машины, умеющие выполнять арифметические операции, понимать и перерабатывать различные сведения. Сейчас машины – математики применяются во всех областях человеческой деятельности.

Приложение

Рисунок 1

Клинописная запись чисел в древнем Вавилоне

Рисунок 2

Цифры в древнем Египте

Рисунок 3


Рисунок 5 Цифры индейцев племени майя

Рисунок 6 Алфавитное изображение чисел в Древней Греции.

Рисунок 7 Обозначение чисел в Древнем Риме.

Рисунок 8 Обозначение чисел в Древней Руси

Тьма

Леодр

Самое большое число - колода . Буква заключалась в квадратные скобки, но не справа и слева, как у обычных букв, а сверху и снизу. Плюс справа и слева ставились два ромбика.

Запись в славянской нумерации числа 444

«Пальцевой счёт» - Древние Египтяне. Абак. Счет дюжинами. Счет десятками. Пальцевый счет. Указательный и большой палец. Название числа. Умножение двузначных чисел. Поверья. Развитие пальцевого счета. Записи вычислений. Способы счета. Как считали сороками. Конек-Гобунок. Появление счета на пальцах. Начало счета. Пальцевый счет сегодня.

«Задания для устного счёта» - Нахождение значений математических выражений. Развитие познавательных интересов к предмету. Материалы устного счета по физике. Требования. Математика. Сравнение математических выражений. Устный счет. Дифференциация. Формы восприятия устного счета. Тренажерные задания. Межпредметная линия. Решение уравнений.

«Формирование вычислительных навыков» - Технология совершенствования вычислительных навыков. Задания-тренажёры. Способы быстрого сложения и вычитания натуральных чисел. Уровень подготовленности и развития каждого ученика. Основная задача технологии. Способы быстрых вычислений. Умножение двузначного числа на 111. Умножение на 9, 99, 999. Все виды заданий тренажёра разбиты на отдельные части.

«Приёмы устного счёта» - Олег Степанов. Число. Материал для тренинга. Двузначное число. Округление. Вопрос. Феноменальные способности. Этапы исследования. Без карандаша и бумаги. Диагностика. Карл Фридрих Гаусс. Ученик. Иноди. Умножить. Быстрое умножение. Лидоро. Урания Диамонди. Картина. Арраго. Шакунтала Деви. Вычисления.

«Счёт на пальцах» - Значит, и англичане когда-то считали по пальцам. И сейчас есть племена, которые говорят "две руки" вместо "десять" и "руки и ноги" вместо "двадцать". Пальцы оказались настолько тесно связанными со счетом, что на древнегреческом языке понятие "считать" выражалось словом "пятерить".

«Математика «Устный счёт»» - Самостоятельная работа. Стоимость. Таблица умножения. Звонок. Примеры. Зарядка для глаз. Пропущенные числа. Пальчиковая гимнастика. Устный счёт. Количество. Задачи. Проверка. Нужный знак. Классная работа. Урок математики. Длины отрезков. Таблица. Настроение.

Всего в теме 24 презентации

Овладение счетом — тоже гигантский скачок в развитии человечества. Ведь надо было суметь отвлечься от конкретных свойств тех или иных предметов и оперировать только их количеством, научиться изображать это количество с помощью каких-то знаков, разработать правила обращения с ними.

А вот какие технические приспособления призывали они на помощь, чтобы управиться со счетом?

Видимо, первыми из них были палочки или камушки. Переставляя и комбинируя их, человек производил простейшие вычисления. До нашего времени дошли счеты — порой на них еще и сейчас учат первым арифметическим действиям в школе. А кое-где можно увидеть пожилую кассиршу или бухгалтера, щелкающих костяшками счетов.

Да ведь с такой скоростью далеко не уедешь! Верно, поэтому попытки механизировать счетный процесс предпринимались давно. Знаменитый математик XVII века Г. В. Лейбниц писал: “Недостойно одаренному человеку тратить, подобно рабу, часы на вычисления, которые безусловно можно было бы доверить любому лицу, если бы при этом применить машину”.

В шестидесятых годах нашего столетия в Национальной библиотеке Мадрида обнаружили неопубликованные рукописи Леонардо да Винчи. Среди чертежей находился эскиз суммирующего устройства с десятизубыми колесами — вы его видите на рисунке.

Так что уже в XV веке, чтобы упростить утомительные и сложные вычисления, стали пользоваться арифмометрами. Поначалу громоздкие и малоэффективные, со временем они совершенствовались и стали незаменимыми помощниками любого расчетчика.

Что представляли собой эти устройства? Наблюдательный вычислитель мог подметить, что любое арифметическое действие состоит из ряда последовательно выполняемых операций. Сейчас мы называем это программой. Вот механическому аппарату, состоящему из набора зубчатых колес, и поручалось выполнять вместо нас эти операции, выдавая на табло результат. Необходимо только поставить перед машинкой задачу — ввести данные — и несколько раз крутануть ручку.

Изобретались также счетные линейки, одна из которых — логарифмическая — была на вооружении вплоть до последних десятилетий, когда ее повсеместно вытеснили электронные калькуляторы и компьютеры. А их появление определялось становлением таких новых областей науки и техники, как электроника и производство новых материалов. Но до этого должно было пройти не одно столетие с момента появления первых механических арифмометров.

Отметим только, что электронно-вычислительные машины пользуются двоичной системой счисления, в ней всего две цифры 0 и 1. С ее помощью можно производить любые известные нам математические операции, только организованы они будут по иным правилам.

Еще не заключив Парижский мир, новый государь, Александр II, стал планировать не только реванш в Крыму, но и, как писали в тогдашних газетах, «новые крупные приобретения» на Дальнем Востоке и в Туркестане. А для этого нужно было иметь свое орудийное производство, научиться делать и пушки не хуже крупповских, и паровые корабли с броней не хуже…

Что это за наука такая — акустоэлектроника? Когда она появилась? Не так давно, когда «породнились» акустика, электроника, электричество. Нередко в электронных приборах, например в ЭВМ, требуется, чтобы один электрический сигнал пришел чуть позже другого, с небольшой задержкой. Следовательно, этот первый сигнал надо немного притормозить. Как это сделать? Можно так: отправить его в обход, по более…

Какой ароматный хлеб! — говорим мы, откусывая свежеиспеченную хрустящую горбушку ржаного каравая. А как неповторимо пахнет наваристый украинский борщ, крендель с корицей, антоновское яблоко! Прямо слюнки текут… Вкусное чувствует не только язык, но и нос. И невкусное, кстати, тоже. Ученые давно изучают запахи, их классификация имеет длинную и довольно неудачную историю. Правда, в последнее десятилетие…

Как глаз на расползающийся мирСвободно налагает перспективуВоздушных далей. Облачных кулис,И к горизонту сводит параллели.Внося в картину логику и строй,— Так разум среди хаоса явленийРаспределяет их по ступенямПричинной связи, времени,пространстваИ укрепляет сводами числа. М. Волошин Потребность и необходимость обмена сведениями возникает не только у людей. Вы, наверное, замечали, как подзывают друг друга птицы, если находят пищу,…

Достижения в области микроскопии стали особенно важны в связи с запросами вычислительной техники. Ведь ее прогресс во многом определялся не только появлением новых материалов — полупроводников, но и возможностью собирать из них мельчайшие устройства. То, что раньше громоздилось в нескольких рабочих помещениях, теперь можно разместить на крохотной кремниевой плате, где отдельные элементы еще недавно достигали…

В представлении миллионов людей главная заслуга ЭВМ — способность быстро и точно считать. Об этом говорит название «вычислительная машина». Да и слово «компьютер» в буквальном переводе означает «считатель». В такой Оценке роли ЭВМ заложена досадная неточность. Если бы компьютер был просто «большим арифмометром», быстродействующими счетами, вряд ли он дал бы название нынешней НТР — «компьютерная…

1868 года, ноября 23-го дня. «Дмитрий Константинович Чернов, повторяя вкратце главнейшие положения, выведенные из своих исследований, выразил главным образом убеждение в том, что сопротивление одной и той же стали весьма разнообразно и колеблется между весьма широкими пределами, — все зависит от сложения данного куска, и что если мы хотим сравнивать два сорта стали, то должны…

«Какая у дочери странная фантазия — хочет стать покровительницей злаков!» — удивилась мать двенадцатилетней Милитины Аладовой. Девочка пришла к этой мысли не случайно — любила разливы пшеничных морей под знойным маревом Поволжья, а когда начинался жестокий суховей, способный иссушить стебельки, думала: «Как бы им, бедным, помочь?..» Прошли годы, прежде чем она стала пытаться это делать….

С незапамятных времен люди использовали душистые вещества, полученные не только из растений, но и от животных. Среди них, пожалуй, первое место занимает загадочная и невзрачная с виду амбра. Долгий путь проделал тверской купец Афанасий Никитин, прежде чем добрался до индийского порта Калькутта. Ехал на лошадях и в тряских повозках, плыл на кораблях и лодках. Пройдут…

Предположим, вы хотите сообщить своему другу что-то важное, не используя современных способов связи. Ну, если друг недалеко, можно ему крикнуть. Если же он находится на значительном удалении, но может хотя бы разглядеть вас, помашете руками. А если он в другом городе? Вот и придется перебрать те виды связи, которыми пользовались наши предки. Давайте попробуем: направить…

Живая счетная машина. Чем больше зерна собирали люди со своих полей, чем многочисленнее становились их стада, тем большие числа становились им нужны. Тогда старые методы счета вытеснил новый – счет по пальцам. Пальцы оказались прекрасной вычислительной машиной. Так, например, желая обменять, сделанное им копье с каменным наконечником на пять шкурок для одежды, человек клал на землю свою руку и показывал, что против каждого пальца его руки нужно положить шкурку. Одна пятерня означала 5, две – 10. Когда рук не хватало, в ход шли и ноги. Две руки и одна нога – 15, две руки и две ноги – 20. Так люди начинали учиться считать, пользуясь тем, что дала им сама природа, – собственной пятерней. С того далекого времени, когда знать, что пальцев пять, значило то же, что уметь считать, пошло это выражение: «Знаю, как свои пять пальцев». Пальцы были первыми изображениями чисел. Очень сложно было складывать и вычитать. Загибаешь пальцы – складываешь, разгибаешь – вычитаешь.

Слайд 7 из презентации «Как человек научился считать» . Размер архива с презентацией 463 КБ.

Математика 5 класс

краткое содержание других презентаций

«Дроби в математике» - А записывать дроби как сейчас стали арабы. Основополагающий вопрос: Современную систему записи дробей создали в Индии. Дробь 7/8 записывали в виде долей: 1/2 + 1/4 + 1/8. Но складывать такие дроби было неудобно. I Группа. Проблемные вопросы: Задание № 8 9 класс А.Г.Мордкович Вычислите, используя приемы разложения на множители:

«Деление с остатком урок» - Всё ль на месте, Всё ль в порядке, Ручка, книжка и тетрадка? 14 (ост 3). Решив примеры и заполнив таблицу, вы сумеете прочитать тему урока. Сделайте вывод: Неполное частное. Делимое. Деление с остатком. Может ли остаток быть больше делителя? Все ль внимательно глядят? Делитель. 26 (ост 5). Задача. 9 (ост 7).

«Умножение и деление десятичных дробей» - Устный счёт. Расшифруй слово. . Тема урока. Решить № 1492 (в, г), № 1493 Пройти тест по десятичным дробям в дневник. ру. И= 6,7. 5 класс Учитель: Эпп Юлия Александровна МБОУ «Красноглинная ООШ №7». Домашнее задание. Умножение и деление десятичных дробей. К = 70, 2.

«Системы исчисления» - Государственное общеобразовательное учреждение средняя общеобразовательная школа № 427 города москвы. Пример написания чисел римскими символами. Какой была римская система исчисления? Для цифры более 70 использовали знаки, упоминаемые выше, в различных комбинациях. Для изображения числа 60 использовали знак единицы, но в другом положении. Введение Определение числа Какими были первые цифры? Папирус Ринда, египетский математический документ (1560 год до н.э.). Содержание:

«Сложение натуральных чисел» - Кто хочет стать отличником. 2. Если прибавить к нулю какое-нибудь число, то получится: 3. В какой последовательности применены свойства сложения: 91+(182+9)+15=91+(9+182)+15= =(91+9)+182+15. 3+(2+1)=(3+2)+1 15+18=18+15 21-17=17-21 4+9=13. По порядку, слева направо Как удобнее Применяя свойства сложения Столбиком. Предлагаемые Слагаемые Неизвестные Данные. 2. Если точки С и М лежат на отрезке АВ, то АВ =:

«История возникновения чисел» - Учебно-исследовательский проект. У каждого человека есть свое главное число. Некоторые системы исчисления брали за основу 12, другие – 60, третьи – 20, 2, 5, 8. Число 5 символизирует риск. Выявить магическое значение чисел. "Кто сетку чисел набросил на мир?". Сначала считали на пальцах. Число 9 - символ всеобщего успеха. Мы хотели узнать много нового о числах. Аннотация.